In vacuum tubes, a hot cathode is a cathode electrode which emits electrons due to thermionic emission. In the accelerator physics (particle accelerator) community, these are referred to as thermionic cathodes. (Cf. cold cathodes, where field electron emission is used and which do not require heating.) The heating element is usually an electrical filament. Hot cathodes typically achieve much higher power density than cold cathodes, emitting significantly more electrons from the same surface area.
Hot cathodes are the main source of electrons in electron guns in cathode ray tubes, electron microscopes, vacuum tubes, and fluorescent lamps.
Contents |
Hot cathodes may be either directly heated, where the filament itself is the source of electrons, or indirectly heated, where the filament is electrically insulated from the cathode; this configuration minimizes the introduction of hum when the filament is energized with alternating current. The filament is most often made of tungsten. With indirectly heated cathodes, the filament is usually called the heater instead. The cathode for indirect heating is usually realized as a nickel tube which surrounds the heater.
The first cathodes consisted simply of a tungsten filament heated to white incandescence (known as bright emitters). Later cathodes are typically covered with an emissive layer, made of a material with lower work function, which emits electrons more easily than bare tungsten metal, reducing the necessary temperature and lowering the emission of metal ions. Cathodes can be made of pure sintered tungsten as well; tungsten cathodes in the shape of a parabolic mirror are used in electron beam furnaces. Thorium can be added to tungsten to increase its emissivity, due to its lower work function. Some cathodes are made of tantalum.
A common type is an oxide-coated cathode. The earliest material used was barium oxide; it forms a monoatomic layer of barium with an extremely low work function. More modern formulations utilize a mixture of barium oxide, strontium oxide and calcium oxide. Another standard formulation is barium oxide, calcium oxide, and aluminium oxide in a 5:3:2 ratio. Thorium oxide is used as well. Oxide-coated cathodes operate at about 800-1000 °C, orange-hot. They are used in most small glass vacuum tubes, but are rarely used in high-power tubes since they are vulnerable to high voltages and oxygen ions, and undergo rapid degradation under such conditions.[1]
For manufacturing convenience, the oxide-coated cathodes are usually coated with carbonates, which are then converted to oxides by heating, and then the metal monolayer is formed in a process called electrode activation. The activation may be achieved by microwave heating, direct electric current heating, or electron bombardment while the tube is on the exhausting machine, until the production of gases ceases. The purity of cathode materials is crucial for tube lifetime.[2]
Lanthanum hexaboride (LaB6) and cerium hexaboride (CeB6) are used as the coating of some high-current cathodes. Hexaborides show low work function, around 2.5 eV. They are also resistant to poisoning. Cerium boride cathodes show lower evaporation rate at 1700 K than lanthanum boride, but it becomes equal at 1850 K and higher. Cerium boride cathodes have one and a half times the lifetime of lanthanum boride, due to its higher resistance to carbon contamination. Boride cathodes are about ten times as "bright" as the tungsten ones and have 10-15 times longer lifetime. They are used e.g. in electron microscopes, microwave tubes, electron lithography, electron beam welding, X-Ray tubes, and free electron lasers. However these materials tend to be expensive.
Other hexaborides can be employed as well; examples are calcium hexaboride, strontium hexaboride, barium hexaboride, yttrium hexaboride, gadolinium hexaboride, samarium hexaboride, and thorium hexaboride.
Thoriated filaments are another option, discovered in 1914 and made practical by Irving Langmuir in 1923.[3] A small amount of thorium is added to the tungsten of the filament. The filament is heated white-hot, at about 2400 °C, and thorium atoms migrate to the surface of the filament and form the emissive layer. Heating the filament in a hydrocarbon atmosphere carburizes the surface and stabilizes the emissive layer. Thoriated filaments can have very long lifetimes and are resistant to high voltages. They are used in nearly all big high-power vacuum tubes for radio transmitters, and in some tubes for hi-fi amplifiers. Their lifetimes tend to be longer than those of oxide cathodes.[4]
Due to concerns about thorium radioactivity and toxicity, efforts have been made to find alternatives. One of them is zirconiated tungsten, where zirconium dioxide is used instead of thorium dioxide. Other replacement materials are lanthanum(III) oxide, yttrium(III) oxide, cerium(IV) oxide, and their mixtures.[5]
In addition to the listed oxides and borides, other materials can be used as well. Some examples are carbides and borides of transition metals, e.g. zirconium carbide, hafnium carbide, tantalum carbide, hafnium diboride, and their mixtures. Metals from groups IIIB (scandium, yttrium, and some lanthanides, often gadolinium and samarium) and IVB (hafnium, zirconium, titanium) are usually chosen.[5]
In addition to tungsten, other refractory metals and alloys can be used, e.g. tantalum, molybdenum and rhenium and their alloys.
A barrier layer of other material can be placed between the base metal and the emission layer, to inhibit chemical reaction between these. The material has to be resistant to high temperatures, have high melting point and very low vapor pressure, and be electrically conductive. Materials used can be e.g. tantalum diboride, titanium diboride, zirconium diboride, niobium diboride, tantalum carbide, zirconium carbide, tantalum nitride, and zirconium nitride.[6]
A cathode heater is a heated wire filament used to heat the cathode in a vacuum tube or cathode ray tube. The cathode element had to achieve the required temperature in order for these tubes to function properly. This is why older electronics often needed some time to "warm up" after being powered on; this phenomenon can still be observed in the cathode ray tubes of some modern televisions and computer monitors. The cathode heats to a temperature that causes electrons to be 'boiled out' of its surface into the evacuated space in the tube, a process called thermionic emission. The temperature required for modern oxide-coated cathodes is around 800–1000 °C (1472–1832 °F)
The cathode is usually in the form of a long narrow sheet metal cylinder at the center of the tube. The heater consists of a fine wire or ribbon, made of a high resistance metal alloy like nichrome, similar to the heating element in a toaster but finer. It runs through the center of the cathode, often being coiled on tiny insulating supports or bent into hairpin-like shapes to give enough surface area to produce the required heat. The ends of the wire are electrically connected to two pins protruding from the end of the tube. When current passes through the wire it becomes red hot, and the radiated heat strikes the inside surface of the cathode, heating it. The red or orange glow seen coming from operating vacuum tubes is produced by the heater.
There is not much room in the cathode, and the cathode is often built with the heater wire touching it. The inside of the cathode is insulated by a coating of alumina (aluminum oxide). This is not a very good insulator at high temperatures, therefore tubes have a rating for maximum voltage between cathode and heater, usually only 200 - 300 V.
Heaters require a low voltage, high current source of power. Miniature receiving tubes for line-operated equipment used on the order of 0.5 to 4 watts for heater power; high power tubes such as rectifiers or output tubes would have used on the order of 10 to 20 watts, and broadcast transmitter tubes might need a kilowatt or more to heat the cathode. [7] The voltage required was usually 5 or 6 volts AC. This was supplied by a separate 'heater winding' on the device's power supply transformer that also supplied the higher voltages required by the tubes' plates and other electrodes. A more common approach used in transformerless line-operated radio and television receivers such as the All American Five was to connect all the tube heaters in series across the supply line. Since all the heaters were rated at the same current, they would share voltage according to their heater ratings. Battery-operated radio sets used direct-current power for the heaters, and tubes intended for battery sets were designed to use as little heater power as necessary, to economize on battery replacement. Radio receivers were built with tubes using as little as 50 mA for the heaters, but these types were developed at about the same time as transistors which replaced them. Where leakage or stray fields from the heater circuit could potentially be coupled to the cathode, direct current was sometimes used for heater power. This would eliminate a source of noise in sensitive audio or instrumentation circuits.
The emissive layers degrade slowly with time, and much more quickly when the cathode is overloaded with too high current. The result is weakened emission and diminished power of the tubes, or brightness of the CRTs.
The activated electrodes can be destroyed by contact with oxygen or other chemicals (e.g. aluminium, or silicates), either present as residual gases, entering the tube via leaks, or released by outgassing or migration from the construction elements. This results in diminished emissivity. This process is known as cathode poisoning. High-reliability tubes had to be developed for the early Whirlwind computer, with filaments free of traces of silicon.
Slow degradation of the emissive layer and sudden burning and interruption of the filament are two main failure modes of vacuum tubes.
Material | Operating temperature | Emission efficacy | Specific emission |
---|---|---|---|
Tungsten | 2500 K | 5 mA/W | 500 mA/cm2 |
Thoriated tungsten | 2000 K | 100 mA/W | 5 A/cm2 |
Oxide coated | 1100 K | 500 mA/W | 10 A/cm2 |
Barium aluminate | 1300 K | 400 mA/W | 4 A/cm2 |